### **Engine Technologies & After Treatment Solutions**

Thomas F. Werner 2nd CIMAC Circle at INMEX SMM India 2019



2nd CIMAC Circle at INMEX SMM India 2019

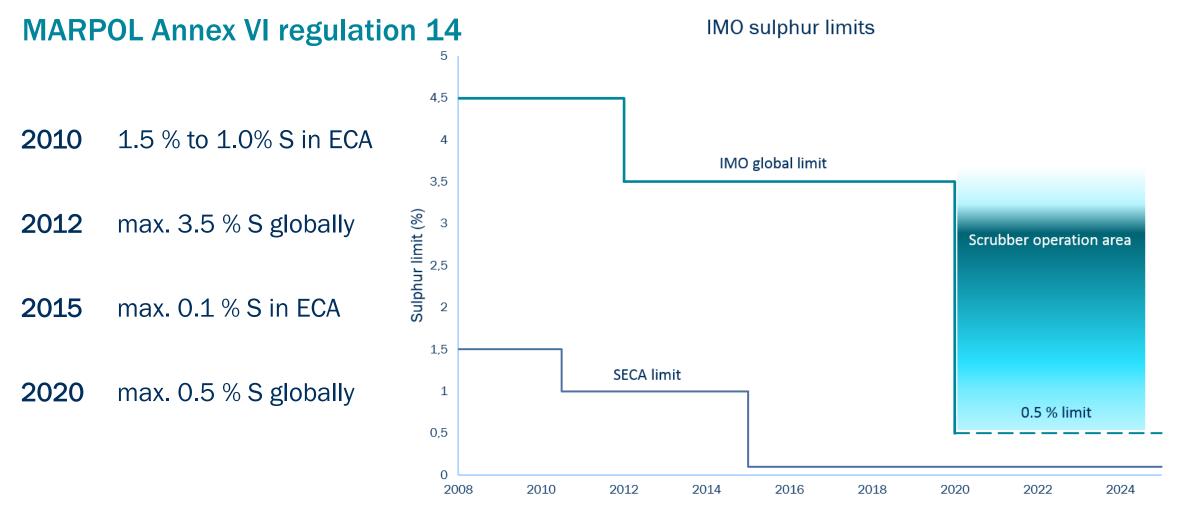
### **Emission Control for ships**

**Engine Technologies & After Treatment Solutions** 

**Focus Areas** 










### **Focus Area: SOx Control**



### Focus Area: SOx Control – Global Sulphur Cap





# Focus Area: SOx Control – Global Sulphur Cap

**Alternatives to comply** 





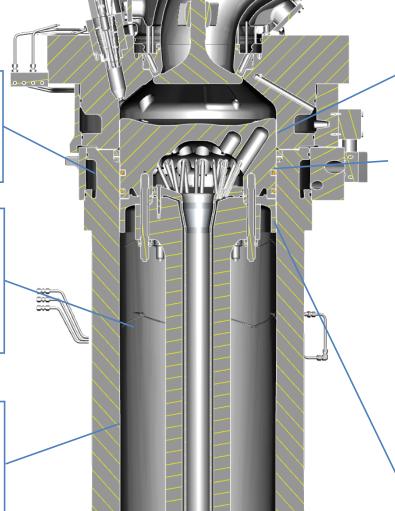


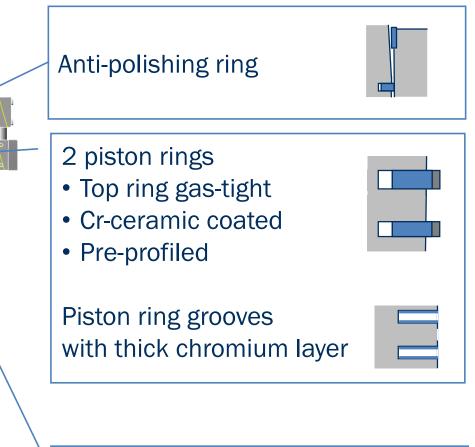
Low sulphur residual fuels (ULSFO, VLSFO)



Scrubbers Install an additional exhaust gas cleaning system.




# **Engine Design**


#### **Piston running**

Optimized liner wall temperatures with individual liner design for diesel and DF engine

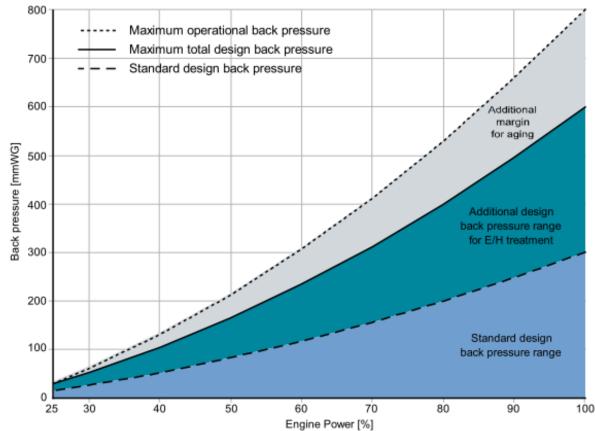
Pulse Lubricating System+ lubricating oil grooves

#### Liner plateau honed





#### Piston skirt nitro carburized



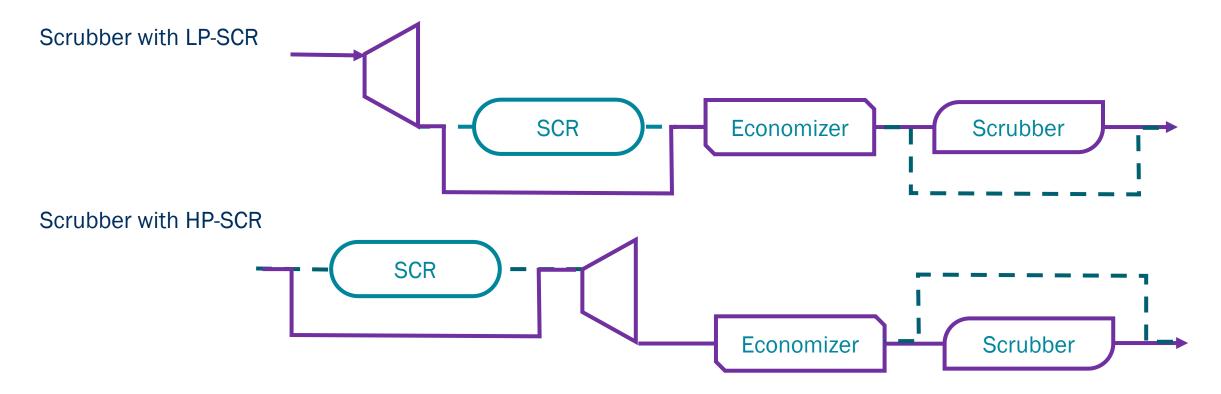

## **Scrubber Installation Newbuilding**

#### **Backpressure limits**

| Standard<br>back pressure<br>[mmWC] | Maximum<br>additional<br>back<br>pressure<br>[mmWC] | Maximum<br>total back<br>pressure<br>[mmWC] | Margin for<br>aging |
|-------------------------------------|-----------------------------------------------------|---------------------------------------------|---------------------|
| 300.0                               | 300.0                                               | 600.0                                       | 200.0               |

Influence on engine performance data (e.g. bsfc) can be generated with latest version of GTD








### **Scrubber Installation**

#### **Engine Interface**

Engines with Scrubber have the same configuration as TierII or TierIII engines. No special interface is needed, as Scrubber maker typically connect to and obtain necessary signals from the Propulsion Control System.





# **Operational Considerations for 2020 Compliant Fuels**

#### **Purchase and bunkering of fuels**

- WinGD recommends the use of ISO 8217:2017 for purchasing of fuel
- It is also advised to follow a proper **fuel management plan** which includes all steps prior to bunkering and until the fuel is used
- All relevant fuel properties including viscosity, pour point, cat fines concentration and total sediment potential should be requested at **bunkering**. If sufficient information is not available, a fuel sample should be sent to a laboratory for analysis
- **Optionally:** Perform on board "**Cleanliness Procedure**" according to ASTM D4740 to check potential of sludge formation of the fuel
- Prior to bunkering, **special attention** must be given to the fuel **cold flow properties** to ensure that these are suitable for the fuel system design and the planned ship routing



# **Operational Considerations for 2020 Compliant Fuels**

#### Storage

- Ship operators should have a suitable plan for the storage of different fuel batches.
- Deliberate **blending** of these different fuels in the storage, settling or service tanks, **should be avoided**; that is, each newly bunkered fuel batch should be stored in a separate storage tank.
- In addition, it is recommended to check the fuel installation and prepare fuel management procedures which will ensure minimal mixing of different fuel batches during operation in the fuel system.
- In general, the **temperature** of the fuel in **storage** should be kept **at least 5-10 °C above** the **pour point** to ensure proper flow properties. However, to avoid potential **wax formation** with low viscosity VLSFO RM fuel grades, this fuel should be **maintained** at **15 °C above the pour point**.





### **Relevant Documents**

#### **WinGD Guidelines and Letters**

#### WinGD Tribology Fuels & Lubricants Page

www.wingd.com/en/technology-innovation/engine-technology/engine-design/tribology-fuels-lubricants

2020 IMO global 0.50 percent fuel sulphur regulation - WinGD operation guideline www.wingd.com/en/documents/technical-information-notes/wingd\_tin011-imo-2020-operation-guideline.pdf

**Diesel Fuels for WinGD engines** 

www.wingd.com/en/documents/fuel-lubricants-water/diesel-fuels-for-wingd-engines-v2.pdf

Fuel Statement 0.1% ULSFO

https://www.wingd.com/en/documents/engine-operation/fuel-statement-0-1-ulsfo-v2.pdf

Lubricants for WinGD engines

www.wingd.com/en/documents/fuel-lubricants-water/lubricants-for-wingd-engines-v3.pdf

WinGD Piston Underside Drain Oil Analysis Tool

www.wingd.com/en/documents/engine-operation/wingd-piston-underside-drain-oil-analysis-tool-v2.xlsx

WinGD Guide for judging condition of relevant piston-running components

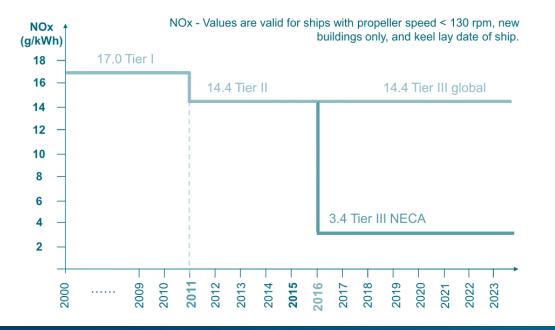
www.wingd.com/en/documents/engine-operation/wingd-guide-for-judging-condition-of-relevant-piston-running-components-v3.pdf



### **Focus Area: NOx Control**



2nd CIMAC Circle at INMEX SMM India 2019

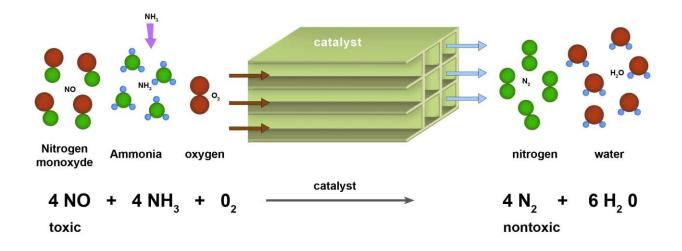

# Focus Area: NOx Control

### IMO/MARPOL Annex VI regulation 13 (NOx )

- The global Tier II NOx limit is 14.4 g/kWh at date.
- The NOx ECA (NECA) limit is 3.4 g/kWh.
- Effective date (keel lay of ship) 1.1.2016 for American NECA, 1.1.2021 for North Sea & Baltic

others after designation








### SCR

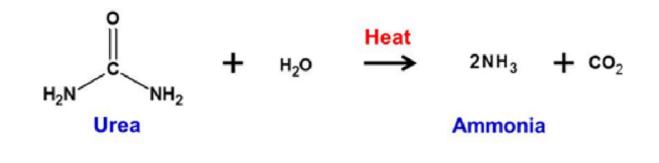
#### **Basic Chemical Reaction Process**

#### **NOx Reduction**









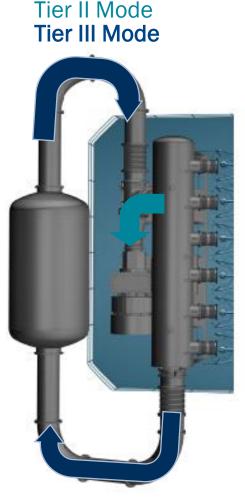


2nd CIMAC Circle at INMEX SMM India 2019



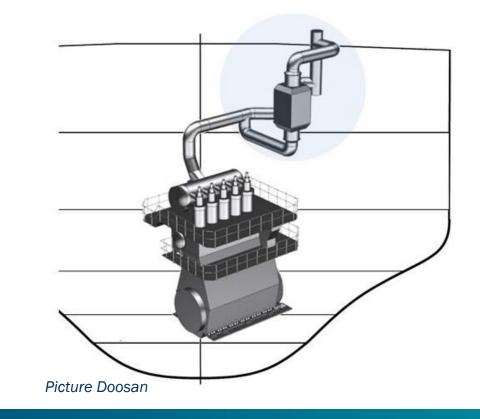
#### **Basic Chemical Reaction Process**

#### **Urea Decomposition**









## **High-Pressure SCR**

- The SCR system is placed on the high-pressure side, before th
- Arrangement of the SCR system in the engine room close to th required.
- WinGD provides valve interface, control specifications and guidelines
- Adaptation for the entire engine portfolio in progress.
- Published engine performance data (GTD data).



### **Low-Pressure SCR**

- The SCR system is placed on the **low-pressure side, after the TC turbine**, giving high flexibility to arrange the SCR system anywhere in a vessel.
- No engine modification is required
- WinGD provides interface specifications
- Integration of LP-SCR control interface.
- Released for the entire engine portfolio.
- Published engine performance data (GTD data).





### **SCR Reference and Orderbook**

### Total 302 engines with SCR on order or delivered

- 142 WinGD Tier III engines are on order with high-pressure SCR and 160 with low-pressure SCR.
- These SCR's are fitted on engine size between 52 to 92 cm bore foreseen to power Tankers, Bulkers and Container Vessels of different sizes.
- Of the 142 installations with HP SCR some 33 installation are in service.
- Of the 160 installations with LP SCR some 28 installation are in service.



#### Status: 08.2019



# SCR installation in workshop

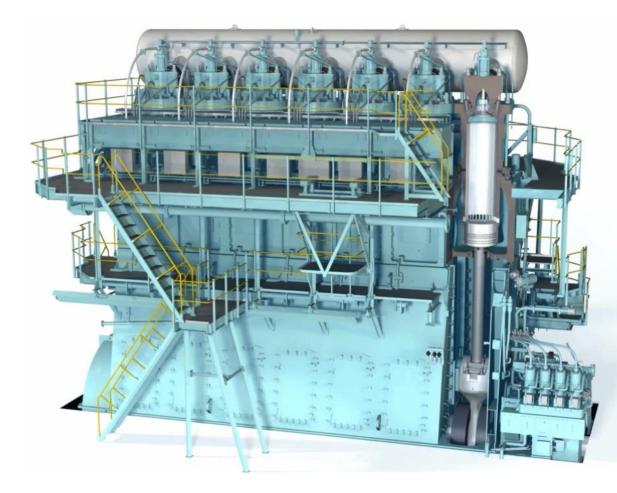
#### **High Pressure SCR**



#### **Low Pressure SCR**






### **Emission Compliance of X-DF engines**



2nd CIMAC Circle at INMEX SMM India 2019

# Low-pressure technology sets the standard

### **Maximum simplicity**



#### The Principle

- Engine operating according to Otto process
- Pre-mixed 'Lean-burn' combustion technology
- Low-pressure gas admission at 'mid-stroke' location
- Ignition by pilot-fuel into pre-chambers

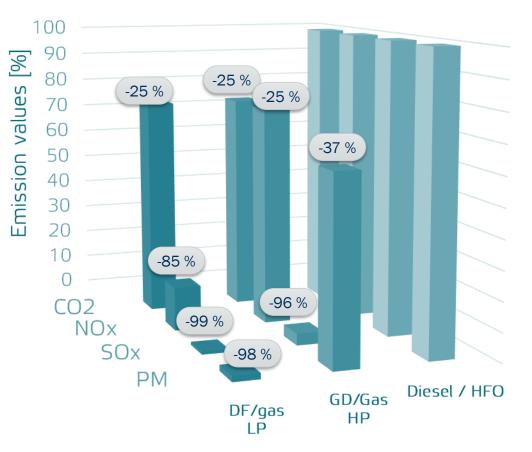
#### The main merits with low gas pressure < 13bar

- Simple and reliable gas supply system
- Simple gas sealing
- Wide selection of proven compressors / cryogenic pumps

#### Lean Burn 'Otto' combustion means

#### **IMO Tier III compliance:**

- Without additional equipment (EGR/SCR)
- Without additional fuel consumption
- Without compromised component reliability

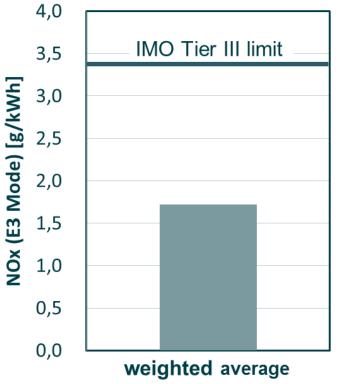


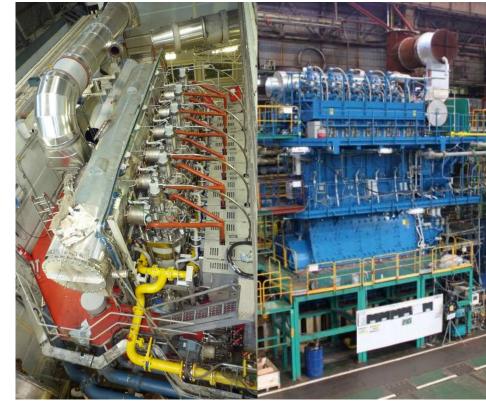



#### **Environmental aspects**

• Benchmarking environmentally-friendly low-pressure technology

- Almost SOX free emission
- > NOx emission Tier III compliant
- Almost PM free emission




# **X-DF Engines**

#### **NOx compliance of X-DF engines**

X-DF engines are Tier III compliant in gas mode
NO<sub>X</sub> levels on gas at about half of IMO Tier III limit







### Conclusions



## Conclusion

#### **Emission Control for Ships**

### **Today : Compliance with existing regulations**

- NOx: Multiple solutions available
- SOx: Scrubbing technology available
- Use of low-Sulphur fuels is current standard for low-speed engines operated in SECA
- X-DF low pressure gas engines: Lowest overall emission footprint meet IMO TIER III requirements without exhaust gas after-treatment

#### **Tomorrow: Prepare for future regulations**

- Continuous development of key engine components related to combustion to further reduce emissions beyond existing regulations, increase efficiency (reduce fuel consumption) and offer full fuel flexibility.
- Use the most advanced tools and methods to provide competitive technologies and designs and co-operate with industry partners and Universities



Thank you Questions and answers



## WinGD in a nutshell

Cooperation with Rudolf Diesel started in 1893

Winterthur Gas & Diesel Ltd. (WinGD) is a leading developer of 2-stroke low-speed gas and diesel engines used for propulsion power in merchant shipping.

WinGD started the development of large diesel engines under the name "Sulzer" already in 1898.

WinGD's target is to set the industry standard for reliability, efficiency and environmental friendliness.

WinGD provides designs, licences and technical support to manufacturers, shipbuilders and ship operators worldwide.

Employees: 353 (from 35 different nations) worldwide





### **Contact information**

Thomas F. Werner Engine Programme Portfolio Manager, R&D

Landline: +41 52 264 8548 Mobile: +41 79 549 6676 E mail: thomas.werner@wingd.com www.wingd.com



2nd CIMAC Circle at INMEX SMM India 2019